Curtis, N. F., Swann, D. A. \& Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1963-1974.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Gilmore, C. J. (1983). MITHRIL. Computer Program for the Automatic Solution of Crystal Structures from X-ray Data. Department of Chemistry, University of Glasgow, Scotland.
Hay, R. W., Lawrance, A. G. \& Curtis, N. F. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 591-593.
Ito, T., Kato, M. \& Ito, H. (1984). Bull. Chem. Soc. Jpn, 57, 2634 2640.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lu, T.-H., Wu, D.-T. \& Chung, C.-S. (1986). J. Chem. Soc. Dalton Trans. pp. 1999-2001.
Molecular Structure Corporation (1987). TEXSAN. TEXRAY Structure Analysis Package. Version 2.1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Riesen, A., Zehnder, M. \& Kaden, T. A. (1991). Acta Cryst. C47, 531-533.
Shen, H.-R., Lee, T.-J., Lu, T.-H., Liang, B.-F. \& Chung, C.-S. (1983). Proc. Natl Sci. Counc. B Rep. China, 7, 113-115.

Acta Cryst. (1996). C52, 1948-1950

## Sodium Hydrogen l-Tartrate

Shingo Matsumoto and Setsuo Kashino*<br>Department of Chemistry, Faculty of Science, Okayama University, Okayama 700, Japan. E-mail: kashinos@cc. okayama-u.ac.jp

(Received 27 November I995; accepted 23 April 1996)


#### Abstract

Crystals of sodium hydrogen l-tartrate, $\mathrm{Na}^{+} . \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}^{-}$, were grown from an aqueous solution at 393 K in a closed vessel. An asymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is formed between the hydrogen l-tartrate anions $[\mathrm{O} \cdots \mathrm{O}$ 2.476 (3) $\AA$ A $]$. The H atom involved in the hydrogen bond is disordered. The sodium ion is coordinated by six O atoms, in contrast to the eight atoms about other alkali metal ions in their hydrogen L-tartrates.


## Comment

The crystals of alkali metal hydrogen l-tartrates, $M^{+} . \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}^{-}\left(M^{+}=\mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}\right)$, belong to space group $P 2_{1} 2_{1} 2_{1}$ and are isostructural with one another (Buschmann \& Luger, 1985; Templeton \& Templeton, 1978, 1989). The corresponding sodium salt crystallizes as a monohydrate from an aqueous solution at room temperature (Bott, Sagatys, Lynch, Smith \& Kennard, 1993; Kubozono, Hirano, Nagasawa, Maeda \& Kashino, 1993). Packing considerations showed that sodium hydrogen l-tartrate, (I), may not crystallize as
an anhydrate which is isostructural with the other alkali metal salts under ambient conditions (Kubozono et al., 1993).

(I)

The crystals of sodium hydrogen l-tartrate (Fig. 1) obtained at 393 K belong to space group $P 2_{1}$. The chain of four C atoms in the anion has the usual planar zigzag conformation [ $\left.\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4177.5(2)^{\circ}\right]$ and lies nearly on (101). A disordered $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is formed between the anions related by a c translation. This disordering was confirmed by careful examination of both the $\Delta \rho$ maps and the results of the least-squares refinement. Bond distances around the C 1 and C 4 atoms indicate that C 1 has a larger carboxyl character than C4, as is also suggested by the occupancy factor of the disordered H atom. The $\mathrm{O} \cdots \mathrm{O}$ distance is shorter than those found in the corresponding hydrogen bonds in the monohydrate of (I) [2.533 (3) Å; Kubozono et al., 1993] and in the acid salts of the other alkali metals [2.531 (1), 2.559 (3) and 2.575 (3) $\AA$ for $\mathrm{K}, \mathrm{Rb}$ and Cs , respectively; Buschmann \& Luger, 1985; Templeton \& Templeton, 1978, 1989]. The OH groups attached to atoms C2 and C 3 donate a hydrogen bond to the O 6 atom of the ion


Fig. 1. A displacement ellipsoid plot of (I) with the atomic numbering scheme. Ellipsoids of $50 \%$ probability are shown for non-H atoms and H atoms are represented as spheres equivalent to $B=1.0 \AA^{2}$. Atoms Hl and H 6 are disordered, their occupancy factors being 0.58 (2) and 0.42 (2), respectively.
related by an a translation to form a hydrogen-bond network of the anions on (020) (Table 3).
The $\mathrm{Na}^{+}$ion is coordinated by four O atoms of the carboxyl and carboxylate groups of the molecules lying on (020), and by two hydroxylic O atoms of the molecules lying on (010) (Fig. 2). The $\mathrm{Na}^{+}$ion is thus coordinated by six O atoms forming a distorted octahedron. On the other hand, in the acid salts of other alkali metals and the monohydrate of (I), the metal ion is coordinated by eight O atoms forming a distorted square antiprism (Kubozono et al., 1993). This difference in the coordination scheme can be explained in terms of contacts between O atoms in the coordination polyhedra. The shortest contacts are 3.168 (2), 3.344 (3) and 3.379 (3) $\AA$ in the $K, R b$ and Cs salts, respectively. If (I) were isostructural with the other alkali metal salts, the shortest contact between O atoms for (I) should be $2.81 \AA$, assuming that the average $M$ O distance is shortened by the same amount, as found in the change from the K salt to the monohydrate of (I). The contact distance obtained is much shorter than the sum of the van der Waals radii of the O atoms. In the coordination polyhedron of ( I ), the shortest contact is found to be 2.982 (3) $\AA$ between atoms O 3 and $\mathrm{OS}(2-x$, $\frac{1}{2}+y, 3-z$ ).
There is no significant difference in the $\mathrm{C} 2-\mathrm{O} 3$ and C3-O4 bond lengths in (I), in contrast with the other alkali metal salts in which the differences amount


Fig. 2. A perspective view of the molecular packing showing both disordered H atoms. Hydrogen bonds are shown by broken lines and coordination around the $\mathrm{Na}^{+}$ion is shown by thin solid lines.
to between 0.012 and $0.028 \AA$. In (I), both the O 3 and O 4 atoms are involved in one $M^{+} \ldots \mathrm{O}$ contact, namely, $\mathrm{Na}^{+} \ldots \mathrm{O} 3\left(1-x, y-\frac{1}{2}, 2-z\right) .2 .461$ (2) and $\mathrm{Na}^{+} \ldots \mathrm{O} 4\left(1-x, \frac{1}{2}+y, 2-z\right) 2.347$ (2) $\AA$. In the other salts, however, O 3 has two and O 4 one $M^{+} \ldots \mathrm{O}$ contact, where a larger partial electron transfer from O 3 to the $M^{+}$ions rather than from O4 may occur.

## Experimental

Crystals of sodium hydrogen L-tartrate (Aldrich, 25138-0) monohydrate were grown from an aqueous solution containing an equimolar quantity of L -tartaric acid and NaOH and were sealed ( 300 mg ) in a glass tube with 300 mg of water at 393 K for 2 d , whereupon crystals of the anhydrate of sodium hydrogen L -tartrate were formed.

## Crystal data

$\mathrm{Na}^{+} . \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}^{-}$
$M_{r}=172.07$
Monoclinic
$P 2$,
$a=5.251$ (4) $\AA$
$b=7.782(4) \AA$
$c=7.592(5) \AA$
$\beta=101.46(6)^{\circ}$
$V=304.1$ (4) $\AA^{3}$
$Z=2$
$D_{x}=1.880 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured

## Data collection

Rigaku AFC-5R diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via $\psi$ scan
(North, Phillips \&
Mathews, 1968)
$T_{\text {min }}=0.84, T_{\text {max }}=1.00$
820 measured reflections
745 independent reflections

## Refinement

Refinement on $F$
$R=0.026$
$w R=0.033$
$S=2.18$
721 reflections
120 parameters
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\max }=0.51$
$\Delta \rho_{\max }=0.26 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.18$ e $\AA^{-3}$
Extinction correction:
$I_{\text {corr }}=I_{o}\left(1+g I_{c}\right)$
Extinction coefficient:
$g=1.65 \times 10^{-4}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9.5-11.5^{\circ}$
$\mu=0.237 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic
$0.58 \times 0.28 \times 0.13 \mathrm{~mm}$
Colourless

721 observed reflections
$[I>3 \sigma(I)]$
$R_{\text {int }}=0.007$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 6$
$k=0 \rightarrow 10$
$l=-9 \rightarrow 9$
3 standard reflections monitored every 97 reflections intensity decay: 0.59\%

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.3.1)

Absolute configuration: the absolute configuration was assigned to agree with the known chirality at C2 and C3 arising from the l-tartaric acid precursor

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

|  | $x$ | $y$ | $z$ | $B_{\mathrm{cq}}$ |
| :--- | :---: | :---: | :---: | :---: |
| Na | $0.1407(2)$ | 0.4212 | $0.7297(1)$ | $1.88(3)$ |
| Na | $0.5709(3)$ | $0.3953(3)$ | $0.8863(2)$ | $2.15(6)$ |
| O 1 | $0.9773(3)$ | $0.4782(3)$ | $0.9961(2)$ | $2.56(7)$ |
| O 2 | $0.8414(4)$ | $0.6065(3)$ | $1.2971(2)$ | $1.90(7)$ |
| O3 | $0.8440(3)$ | $0.2211(3)$ | $1.2988(2)$ | $1.87(7)$ |
| O4 | $0.7160(3)$ | $0.3503(3)$ | $1.5988(2)$ | $2.27(6)$ |
| O5 | $0.3123(3)$ | $0.4087(3)$ | $1.4573(2)$ | $2.09(6)$ |
| O6 | $0.7546(4)$ | $0.4566(3)$ | $1.0118(2)$ | $1.51(7)$ |
| C1 | $0.6628(4)$ | $0.4976(4)$ | $1.1857(3)$ | $1.47(7)$ |
| C2 | $0.6213(4)$ | $0.3275(4)$ | $1.2797(3)$ | $1.43(7)$ |
| C3 | $0.5404(4)$ | $0.3654(3)$ | $1.4588(3)$ | $1.43(7)$ |

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

| $\mathrm{O} 1-\mathrm{Cl}$ | $1.304(3)$ | $\mathrm{O}-\mathrm{C} 4$ | $1.242(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O} 2-\mathrm{C} 1$ | $1.210(3)$ | $\mathrm{C} 1-\mathrm{C} 2$ | $1.526(3)$ |
| $\mathrm{O} 3-\mathrm{C} 2$ | $1.414(3)$ | $\mathrm{C} 2-\mathrm{C} 3$ | $1.540(3)$ |
| $\mathrm{O} 4-\mathrm{C} 3$ | $1.417(3)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.532(3)$ |
| $\mathrm{O}-\mathrm{C} 4$ | $1.266(3)$ |  |  |
| $\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 2$ | $124.6(2)$ | $\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$ | $111.1(2)$ |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | $113.2(2)$ | $\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 4$ | $113.0(2)$ |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | $122.2(2)$ | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $109.6(2)$ |
| $\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$ | $110.9(2)$ | $\mathrm{O} 5-\mathrm{C} 4-\mathrm{O} 6$ | $125.0(2)$ |
| $\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$ | $112.1(2)$ | $\mathrm{O} 5-\mathrm{C} 4-\mathrm{C} 3$ | $116.3(2)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $108.6(2)$ | $\mathrm{O} 6-\mathrm{C} 4-\mathrm{C} 3$ | $118.7(2)$ |

Table 3. Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$

| $D-\mathrm{H} \cdots \mathrm{A}$ | D-H | H $\cdots$ A | D...A | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ol}-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$ | 0.90 (6) | 1.59 (6) | 2.476 (3) | 169 (9) |
| O5-H6 . $\mathrm{O}^{\text {Ii }}$ | 0.71 (8) | 1.81 (8) | 2.476 (3) | 157 (9) |
| $\mathrm{O} 3-\mathrm{H} 4 \cdots \mathrm{O}^{\text {iii }}$ | 0.75 (4) | 2.33 (5) | 2.961 (3) | 142 (4) |
| O4-H5 . $\mathrm{O6}^{\text {iv }}$ | 0.82 (4) | 2.11 (4) | 2.907 (3) | 161 (3) |

Symmetry codes: (i) $x, y, z-1$; (ii) $x, y, 1+z ;$ (iii) $1+x, y, z$; (iv)
$1+x, 1+y, z$.

H atoms were located from a difference Fourier map and the coordinates and displacement parameters were refined, except for the disordered H atoms between the $\mathrm{Ol} \cdots \mathrm{O}$ hydrogen bond, H 1 and $\mathrm{H6}$, whose $B_{\text {iso }}$ values were fixed to the average value of $B_{\mathrm{eq}}$ of Ol and O . The occupancy factors of the H atoms converged to 0.58 (2) and 0.42 (2) in the least-squares refinement. The final $\Delta \rho$ map showed no significant peaks around these H atoms, $\Delta \rho$ being at most $0.10 \mathrm{e}^{\AA}{ }^{-3}$. All calculations were performed on a VAX 3100 computer at the X-ray Laboratory of Okayama University, Japan.

Data collection: MSCIAFC Data Collection and Refinement Software (Rigaku Corporation, 1990). Cell refinement: MSC/AFC Data Collection and Refinement Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: MITHRIL (Gilmore, 1984). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPП (Johnson, 1976). Software used to prepare material for publication: TEXSAN.

[^0]
## References

Bott, R. C., Sagatys, D. S., Lynch, D. E., Smith, G. \& Kennard, C. H. L. (1993). Acta Cryst. C49, 1150-1152.

Buschmann, J. \& Luger, P. (1985). Acta Cryst. C41, 206-208.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Johnson, C. K. (1976). ORTEPII. Report ORLN-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kubozono, Y., Hirano, A., Nagasawa, S., Maeda, H. \& Kashino, S. (1993). Bull. Chem. Soc. Jpn, 66, 2166-2173.

Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Rigaku Corporation (1990). MSCIAFC Data Collection and Refinement Software. Rigaku Corporation, Tokyo, Japan.
Templeton, L. K. \& Templeton, D. H. (1978). Acta Cņst. A34, 368371.

Templeton, L. K. \& Templeton, D. H. (1989). Acta Cryst. C45, 675676.

Acta Cryst. (1996). C52, 1950-1954

## 2-Carboxy-9-dihydroxymethyl-1,10-phenanthroline Complexes of Cobalt(II) and Copper(II)

Dawn M. Sabel, ${ }^{a}$ Julia A. Thompson, ${ }^{a}$<br>Raymond Butcher ${ }^{b}$ and Paul H. Smith ${ }^{a}$<br>${ }^{a}$ Los Alamos National Laboratory, Los Alamos, NM 87545 , USA, and ${ }^{b}$ Howard University, Washington, DC 20059, USA.<br>E-mail: psmith@lanl.gov

(Received 25 July 1995; accepted I April 1996)

## Abstract

$\operatorname{Bis}(9-d i h y d r o x y m e t h y l-1,10$-phenanthroline-2-carboxyl-ato- $N, N^{\prime}, O$ ) cobalt(II) hydrate, $\left[\mathrm{Co}\left(\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, and bis(9-dihydroxymethyl-1,10-phenanthroline-2-car-boxylato- $N, N^{\prime}, O$ )copper(II) hydrate, $\left[\mathrm{Cu}\left(\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\right]$.$\mathrm{H}_{2} \mathrm{O}$, are isostructural. The stable gem-diol ligands are tridentate (two N atoms and one carboxylate O atom) and form a distorted octahedron around the metal center. The total bite angle of the ligand is approximately $150^{\circ}$.

## Comment

Tridentate phenanthroline ligands are not common. Lee \& Trogler (1990) have reported a monosubstituted phenanthroline ligand which coordinates with $\mathrm{Cu}^{1}$. The species, however, forms a dimer ( $M_{2} L_{2}$ ) where the phenanthroline N atoms bind one Cu atom and the


[^0]:    Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry, including torsion angles and $\mathrm{Na}^{+}$ coordination details, have been deposited with the IUCr (Reference: AB1342). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

